
TestFlow 助电源研发工程师构建自己的自动测试平台

BenchVue & Testflow

- ✔ 所见即所得
- ✔ 拖拽式操作
- ✔ 操作简单
- ✔ 自动生成测试数据

2017年电源网工程师巡回培训会-西安培训讲义

Keysight begins with HP (休利特和帕卡德)

We believe in "Innovation"

HPs founders

The Garage

A landmark in Silicon Valley

The first product

... and the first customer

车库文化

车库地址: 367 Addison Ave, Palo Alto, California

车库地址: 4651 Kingswell Ave, Los Angeles, California

车库地址: 2066 Crist Dr., Los Altos, California

车库地址: 232 Santa Margarita Ave, Menlo Park, California

是德科技

成立77年历史的"新"公司

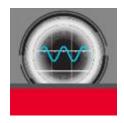
1939-1998: 惠普时代

一家从电子测量业务起家的公司

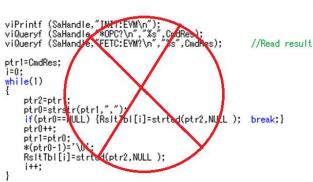
1999-2013: 安捷伦科技时代

从惠普拆分出来,成为世界领先的测试测量公司

2013年9月宣布公司拆分

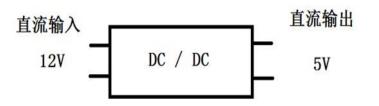


2014: 是德科技开始运营


100% 专注于电子测量领域

构建工作台上的自动化测试

BenchVue & Testflow



- ✓ 无需编程经验
- ✓ 硬件工程师自己的测试软件

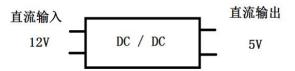
Case 0: DC-DC基本性能测量

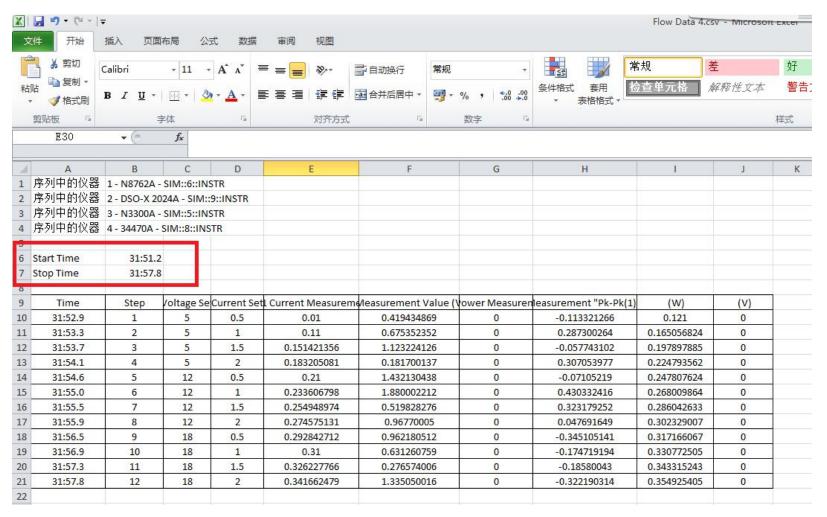
输入电压: 标称12V, 范围5-18V

输出电压: 5V 输出电流: < 2A

输出效率? 纹波噪声?输出电压波动范围?

Vin	lload	lin	Vout	Pin	Pout	Eff	Vpk-pk
5Vdc	0.5A						
5Vdc	1A						
5Vdc	1.5A						
5Vdc	2A						
12Vdc	0.5A						
12Vdc	1A						
12Vdc	1.5A						
12Vdc	2A						
18Vdc	0.5A						
18Vdc	1A						
18Vdc	1.5A						
18Vdc	2A						



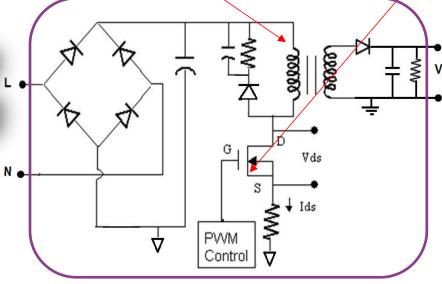

- ▶ 请问这组参数测试共有多少组数据?
- ▶ 请问你用多长时间完成这组参数的测量?

$$3 (V) \times 4 (I) \times 6 (S) = 72$$

6秒钟完成测试并获得数据?

是德科技完整的电源测试方案

磁材,变压器、 线圈测试



开关器件、纹波、 频响分测试析

交流,直流电源 稳态和瞬态供电

LISN Device under test under test Limiter

传导、辐射、EMI测试

电子负载

温度特性测试

Benchvue & TestFlow 构建智慧仪表

磁材,变压器、 线圈测试

开关器件、纹波、 频响分测试析

交流, 直流电源 稳态和瞬态供电

BenchVue & TestFlow

电子负载

精确功率、谐波测试

传导、辐射、EMI测试

温度特性测试

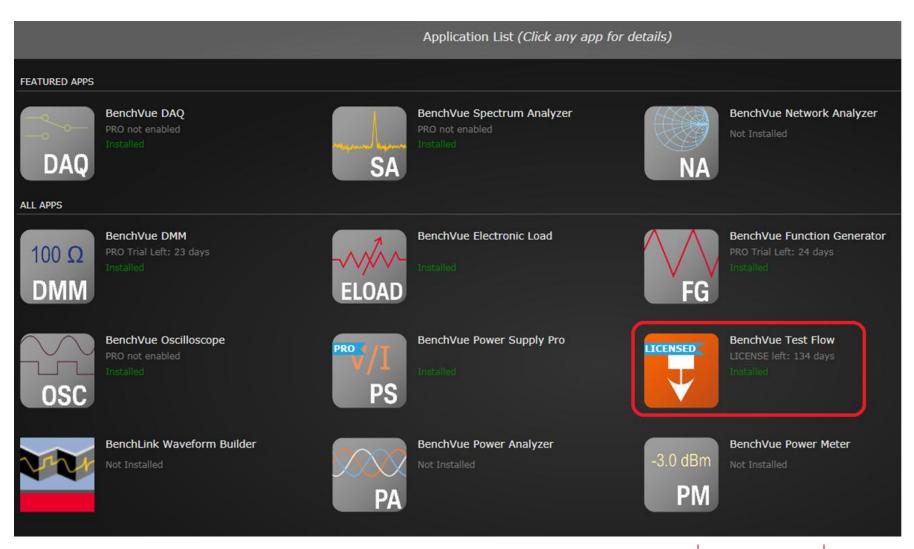
BenchVue & Testflow是什么?

用户无需编程(经验)即可:

- 连接仪器
- 编辑测试序列
- 记录数据
- 获取测量结果

BenchVue可视作仪器与上位 机的神经网络

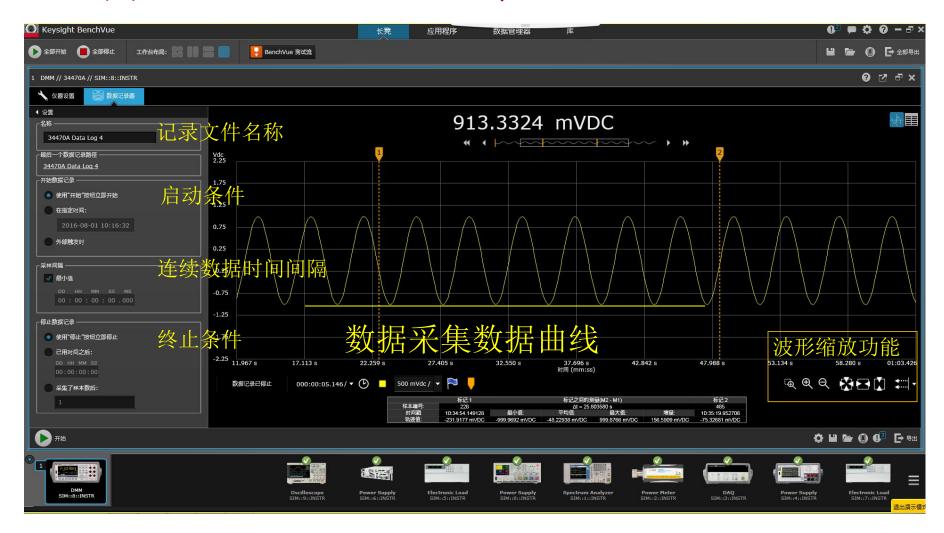
示波器


申.源

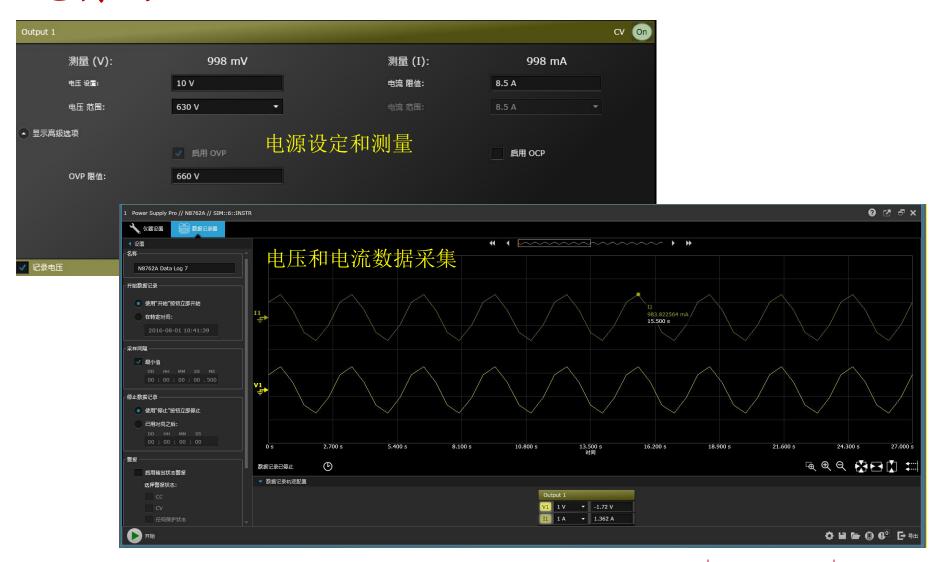
频谱仪

万用表, 数采 更种 Keysight 产品

BenchVue已支持仪表的APP类型



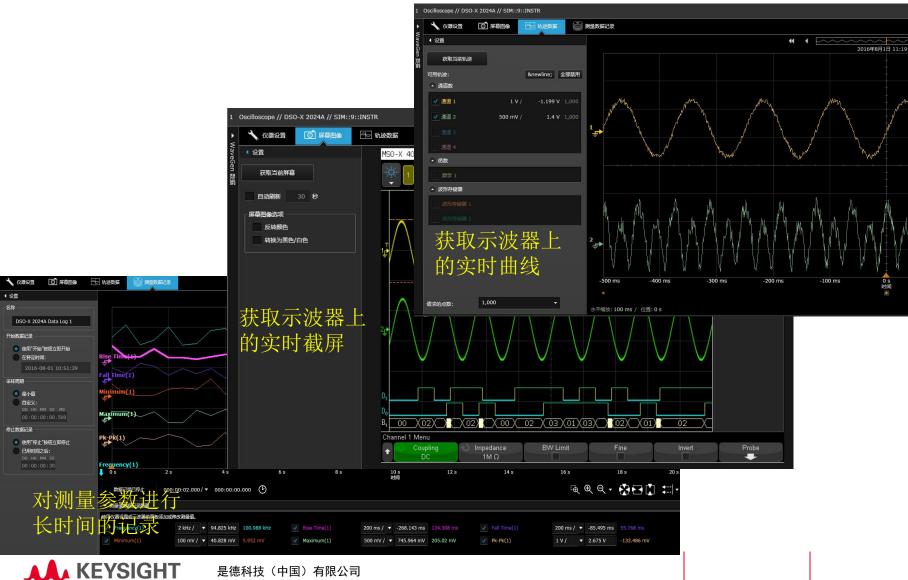
万用表的APP——仪器设置(虚拟面板)



万用表的APP——数据记录

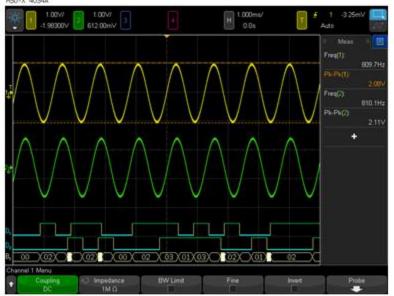
电源的APP

电子负载的APP



示波器的APP——仪器设置

示波器的APP——屏幕、轨迹和数据记录


示波器的APP——屏幕(Word)、轨迹(CSV)

SIM::9::INSTR

摘要		
型号:	Oscilloscope DSO-X 2024A	
序列号:	Simulated9	
地址:	SIM::9::INSTR	
日期:	2016/8/1 10:52:49	

屏幕图像:

设置文本信息:

ANALOG

Ch 1 Scale 1 V/, Ros -2.5 V, Coup., BW Off, Inv Off, Imp 50 Ohm

Probe Q.: 1, Skew 0 s

Ch 2 Scale 1 V/, Pas -500 mV, Caup., BW Off, Inv. Off, Imp 50 Ohm

Probe Q .; 1, Skew 0 s

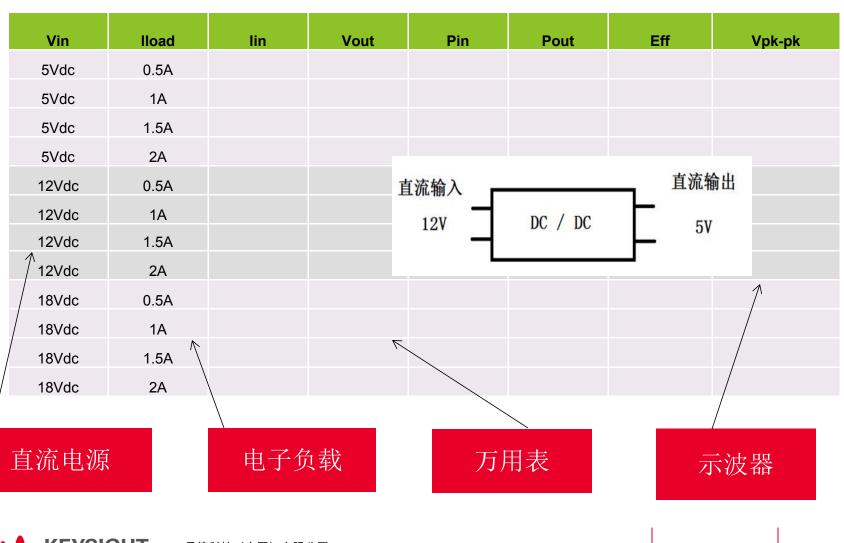
截屏发送到Word

4	日期:	********											
5	4#4014 * -1-2	1000											
7	模拟样本	1000											
8	设置文本位	公白 。											
9	ANALOG	言思-				TRIGGER			HORIZON	TAL		ACQUISIT	ION
	Ch 1			Ch 2		INIGGER			HUKIZUN	IAL		ACQUISIT	ION
11	Scale	1 V/		Scale	1 V/	Sweep M	odo		Mode	MAIN		Mode	NORM
12	Pos	-2.5 V		Pos	-500 mV	Holdoff	0.000000	0000 =	Ref	cen		Realtime	
	Coup	-2.5 V		Coup	-500 mv	Mode	EDGE	00005	Main Sca			Vectors	Off
14	BW	Off		BW	Off	Source	Ch 1		Main Del	1		Persister	
	Inv	Off		Inv	Off	Slope	POS		Main Dei	0.5		reisister	minice
16	77.77	50 Ohm			50 Ohm	100000	500 mV						
	Imp Probe	0:01		Imp Probe	0:01	Level	SUU MV						
17 18	Skew	0.01		Skew	0.01 0.s								
19	skew	0.5		skew	0.5								
20	模拟诵道												
21		时间 (s)	1.0/017	2 (1/0/7)									
22	1+45冊与			0.694376									
23	2			0.502767									
24	3			0.502767									
25	4			0.766555									
26	5			0.475048									
27	6			0.473048									
28	7			0.576244									
29	8			0.428969									
30	9			0.428909									
31	10	100000		0.490413									
32	11			0.262563									
33	12			0.202303									
34	13	-0.488		-0.08197									
35	14			-0.08137									
36	15			-0.01874									
37	16			-0.28556									
38	17			-0.27916									
39	18			-0.36281									
40	19	-0.483		-0.43013									
41	20	100000		-0.37291									
42	21			-0.31309									
43	22	-0.479		-0.07292		t-4.	ते: 4	2.24	乙山	201	/		
44	23			0.024307		学儿 。	沙 卜	2 1大	到(5	V		
45	24			0.023071		1/ 4/	- //	~.~	,		-		
46	25			0.055083									
-		Frace 0		0.00000									

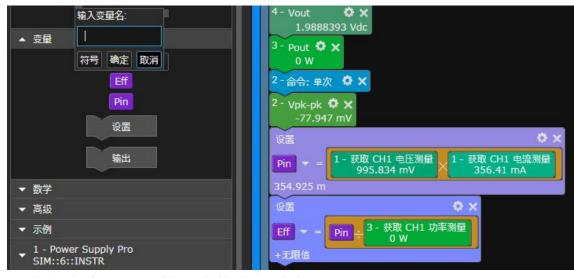
同时加载多种仪表的APP

还有更多……

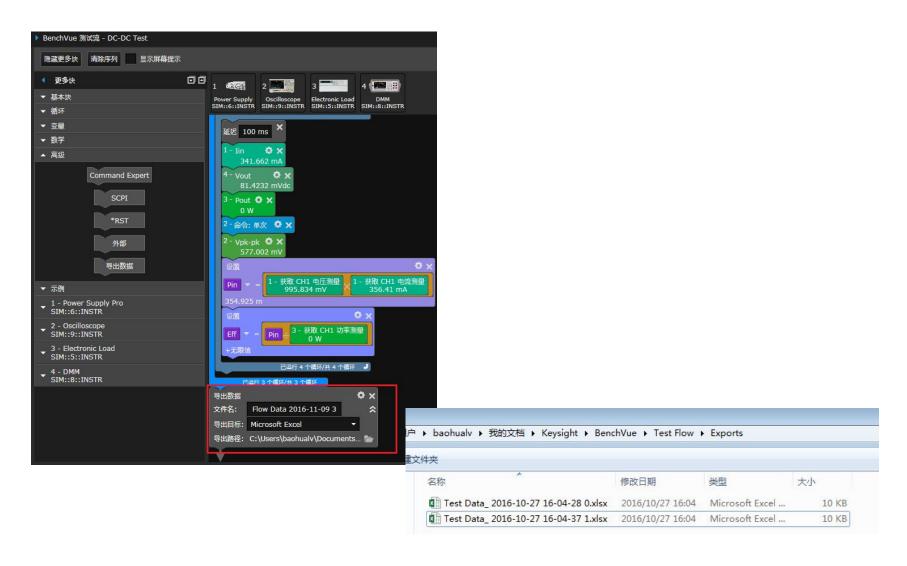
循环



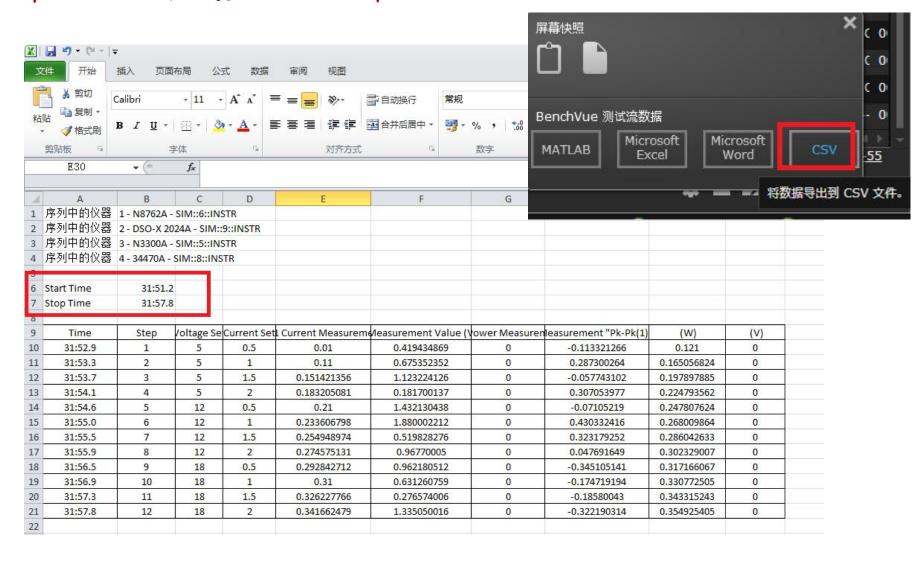
DC-DC性能测试要求及仪表


TestFlow测试程序流APP

拖拽构建DC-DC测试序列



自定义变量, 计算可直接获得效率: Eff = Pout / Pin



自动生成测试数据报告文件

详细的测试数据文件

使用演示模式完成Test Flow的学习和评估

更多关于BenchVue/Test Flow

http://www.keysight.com/find/benchvue

BenchVue 软件

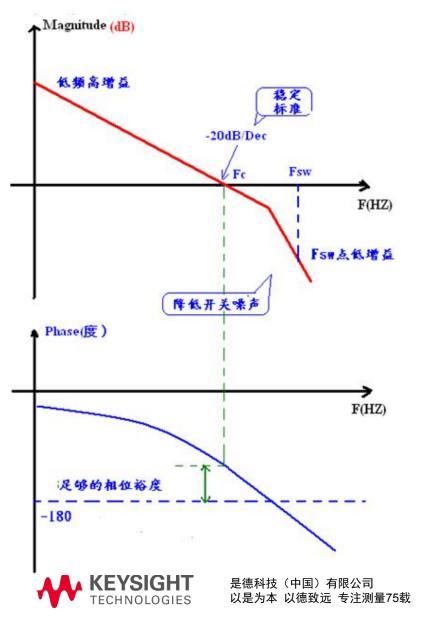
- 查看技术概览 *
- ▲ 访问论坛(英文版)
- D 观看 YouTube 视频 ☑

BenchVue 软件

BenchVue 软件 (在 PC 上运行)可以让用户不必进行编程就能简单地连接仪器、记录数据和获得测量结果。

BenchVue 是一款综合测试应用软件,可以让您:

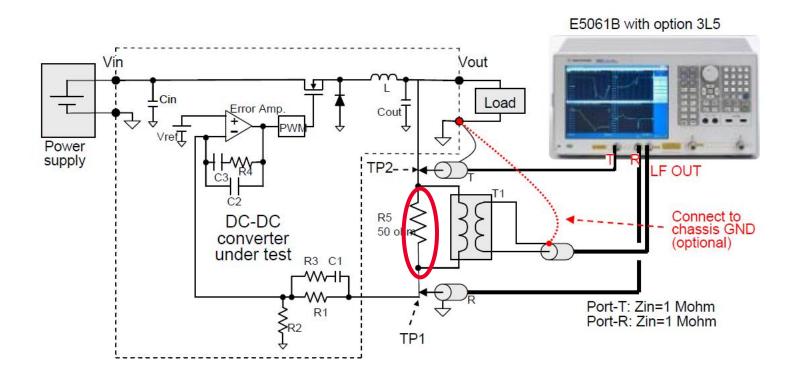
- 同时显示多项测量结果
- 轻松记录数据、屏幕截图和系统状态
- 调用台式仪器以前的状态数据, 重现测量结果
- 快速构建定制的测试序列
- 快速导出特定格式的测量数据文件
- 快速访问手册、驱动程序、常见问题解答和视频
- 通过移动设备监控工作台


- ✓所见即所得
- √ 拖拽式操作
- √ 操作简单
- ✓ 自効生成测试数据

访问 是德科技 官方网站,

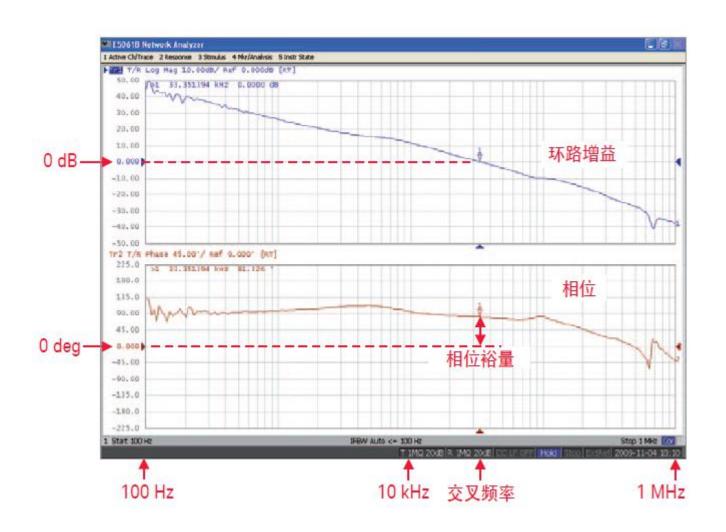
可免费下载、安装Benchvue,试用和评估各种仪表的APP及Test Flow。

环路稳定性测试与分析

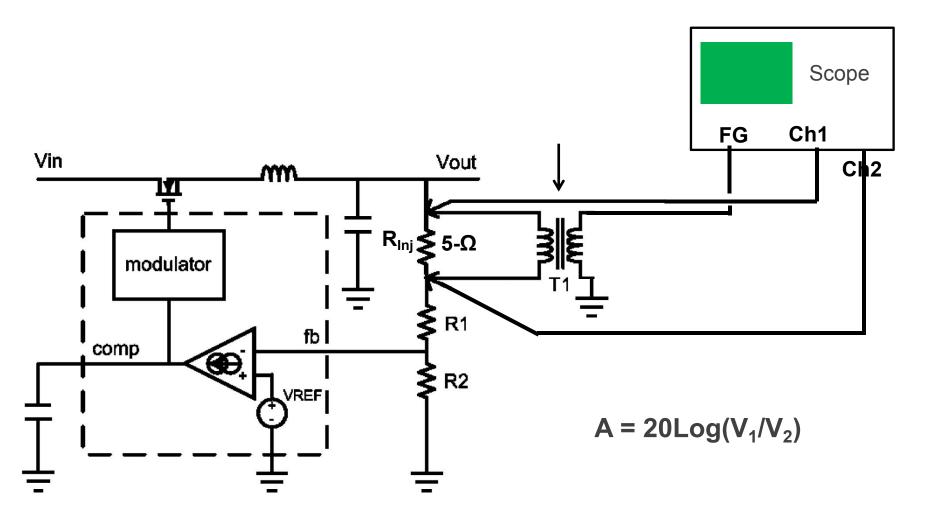

稳定系统的条件:

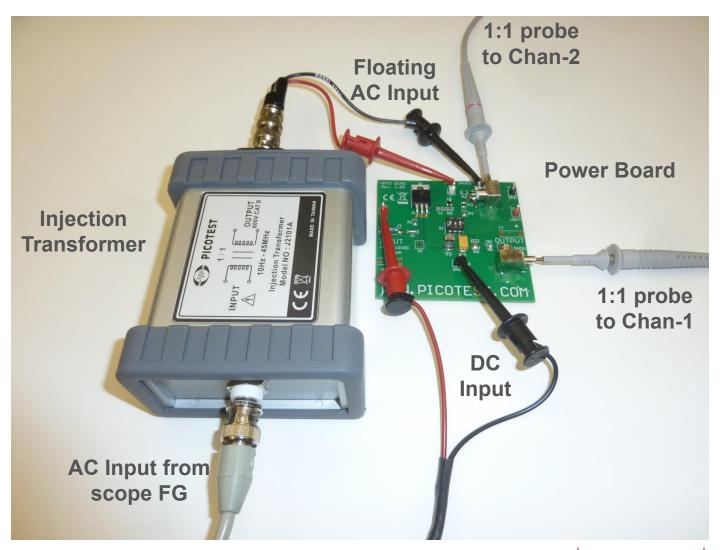
- Fc小于0.5*Fsw (推荐值为5%~20%Fsw)
- 相位裕度大于 45° (在Fc之前的所有频率点)

较好的系统:

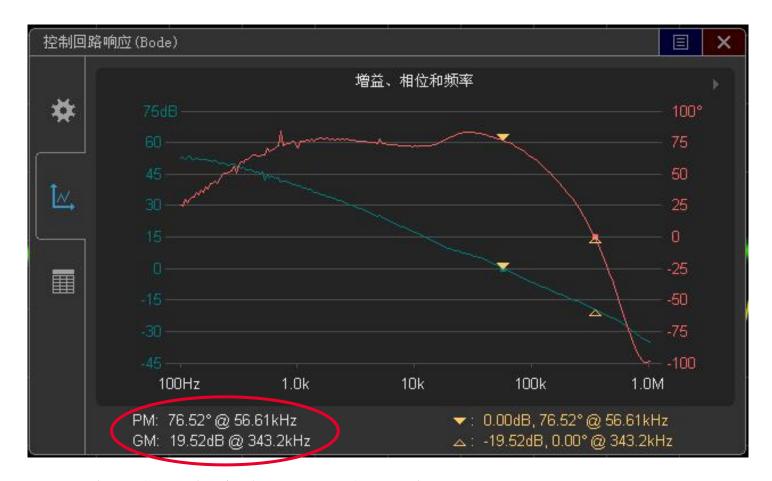

- 比较高的Fc,提高放大器的响应速度
- 合适的相位裕度(45°-80°)
- 在Fsw时有足够的增益衰减,降低开关噪声

传统环路响应测试方案




传统环路响应测试方案

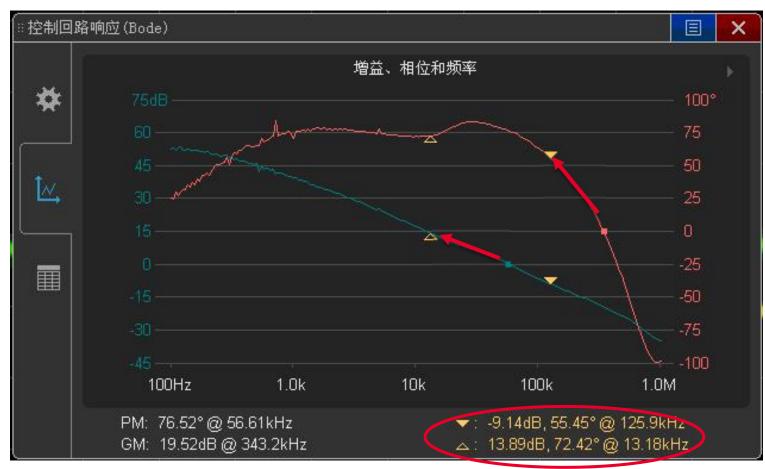
- ① 频率模式:有"扫描"和"单点"模式,选择"扫描"模式;
- ② 频率(开始,停止):设置扫描起止频率,根据实际应用选择,一般开始频率设置为100Hz,停止频率适当大于开关频率;
- ③ 每是倍频率的点数:可以设置频率扫描点数,建议设置为最大50个点;
- ④ 来源(输入,输出):左边更改为注入电阻下端的测试探头所在通道,右边更改为注入电阻上端(输出电压)的测试探头所在通道;
- ⑤ WaveGen (振幅,阻抗):设置注入电压大小(依实际应用),波形发生器输出阻抗保持默认50ohm即可



说明:新版软件增加注入电压分段设置功能,勾选屏幕中"振幅模式"会出现所有十倍频区间段的注入电压设置,用户根据实际波形可以适当调整注入电压大小:

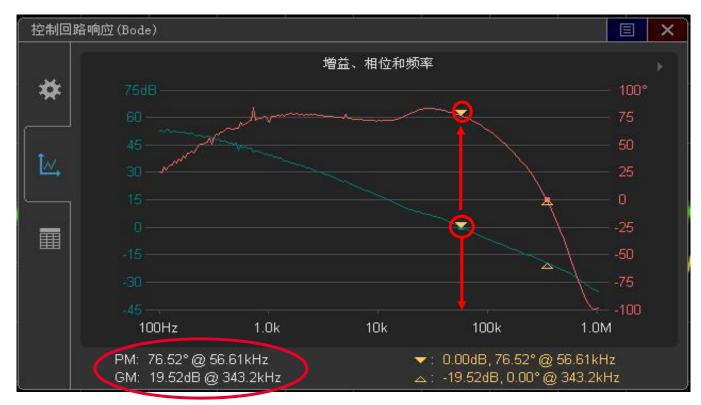
7,全部设置完毕后,直接点击"应用",环路响应测试即自动运行。

测试结果

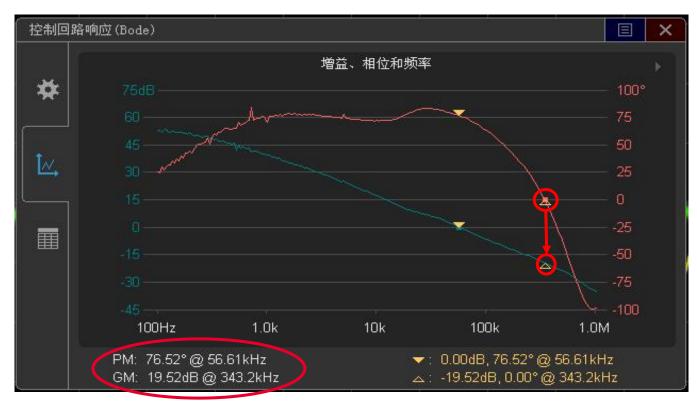

测试结果左下角会自动显示如下结果:

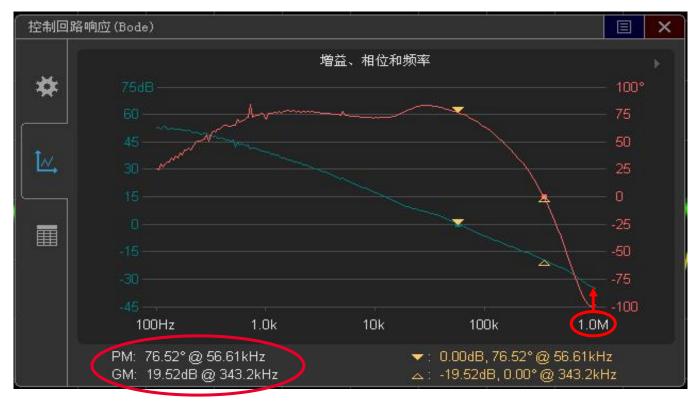
PM (相位裕度):相位裕度@穿越频率@0dB

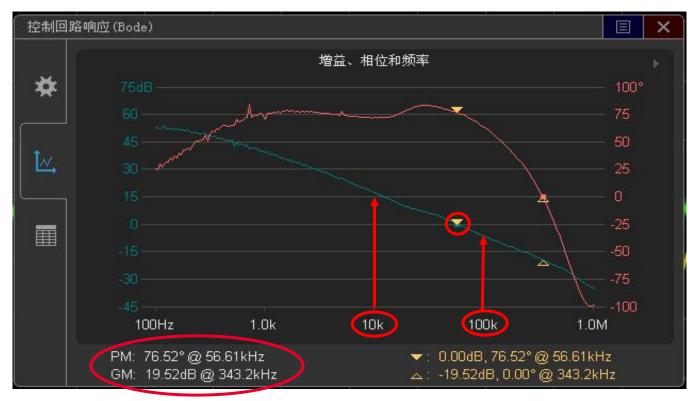
GM (增益裕度):增益裕度@对应频率@0度



测试结果

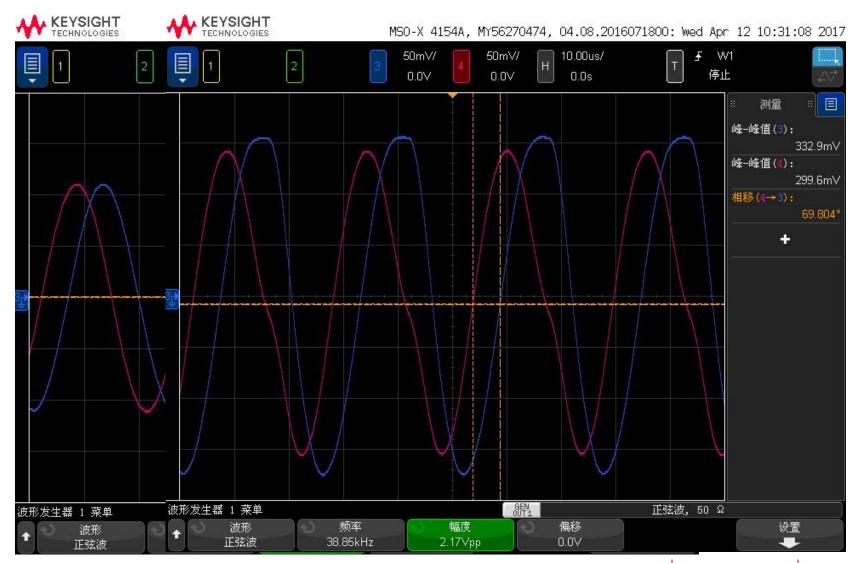

如果自动显示的结果不能满足测试需求,可以通过触摸屏或者鼠标移动标注点(黄色三角符号)位置,在屏幕右下角会显示每个标注点对应的"增益.相位差@频率"


- ◆ 穿越频率(增益为0dB时): 建议为开关频率的5%--20%
- ◆ 相位裕度(增益为0dB时): 大于45°,建议45°--80°
- ◆ 增益裕度(相位为0°时): 小于-10dB
- ◆ 增益衰减(增益@开关频率): 小于-20dB
- ◆ 穿越斜率 (0dB附近): 单极点穿越 (-20dB每十倍频)


- ◆ 穿越频率(增益为0dB时): 建议为开关频率的5%--20%
- ◆ 相位裕度(增益为0dB时): 大于45°,建议45°--80°
- ◆ 增益裕度(相位为0°时): 小于-10dB
- ◆ 增益衰减(增益@开关频率): 小于-20dB
- ◆ 穿越斜率 (0dB附近): 单极点穿越 (-20dB每十倍频)

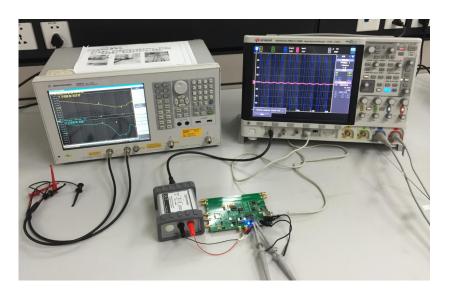
- ◆ 穿越频率(增益为0dB时): 建议为开关频率的5%--20%
- ◆ 相位裕度(增益为0dB时): 大于45°,建议45°--80°
- ◆ 增益裕度(相位为0°时): 小于-10dB
- ◆ 增益衰减(增益@开关频率): 小于-20dB
- ◆ 穿越斜率 (0dB附近): 单极点穿越 (-20dB每十倍频)

- ◆ 穿越频率(增益为0dB时): 建议为开关频率的5%--20%
- ◆ 相位裕度(增益为0dB时): 大于45°,建议45°--80°
- ◆ 增益裕度(相位为0°时): 小于-10dB
- ◆ 增益衰减(增益@开关频率): 小于-20dB
- ◆ 穿越斜率 (0dB附近): 单极点穿越 (-20dB每十倍频)



测试结果 (列表模式)

测试结果(单点测试)



方案对比

示波器方案:

- ▶ 性价比高;
- ▶ 利用率高;
- ▶ 操作简单;
- > 可以看到时域波形;
- ▶ 单点模式注入电压设置更合理;

网分方案:

- ▶ 起始高增益更准确;
- ➤ 可以测量PDN网络;

